Detailansicht

Ti3C2Tx-UHMWPE Nanocomposites

Towards an Enhanced Wear-Resistance of Biomedical Implants

verfasst von
Benedict Rothammer, Klara Feile, Siegfried Werner, Rainer Frank, Marcel Bartz, Sandro Wartzack, Dirk W. Schubert, Dietmar Drummer, Rainer Detsch, Bo Wang, Andreas Rosenkranz, Max Marian
Abstract

There is an urgent need to enhance the mechanical and biotribological performance of polymeric materials utilized in biomedical devices such as load-bearing artificial joints, notably ultrahigh molecular weight polyethylene (UHMWPE). While two-dimensional (2D) materials like graphene, graphene oxide (GO), reduced GO, or hexagonal boron nitride (h-BN) have shown promise as reinforcement phases in polymer matrix composites (PMCs), the potential of MXenes, known for their chemical inertness, mechanical robustness, and wear-resistance, remains largely unexplored in biotribology. This study aims to address this gap by fabricating Ti3C2Tx-UHMWPE nanocomposites using compression molding. Primary objectives include enhancements in mechanical properties, biocompatibility, and biotribological performance, particularly in terms of friction and wear resistance in cobalt chromium alloy pin-on-UHMWPE disk experiments lubricated by artificial synovial fluid. Thereby, no substantial changes in the indentation hardness or the elastic modulus are observed, while the analysis of the resulting wettability and surface tension as well as indirect and direct in vitro evaluation do not point towards cytotoxicity. Most importantly, Ti3C2Tx-reinforced PMCs substantially reduce friction and wear by up to 19% and 44%, respectively, which was attributed to the formation of an easy-to-shear transfer film.

Organisationseinheit(en)
Institut für Maschinenkonstruktion und Tribologie
Externe Organisation(en)
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU Erlangen-Nürnberg)
Universität des Saarlandes
Universidad de Chile
Agencia Nacional de Investigación y Desarrollo (ANID)
Pontificia Universidad Catolica de Chile
Typ
Artikel
Journal
Journal of Biomedical Materials Research - Part A
Band
113
Anzahl der Seiten
15
ISSN
1549-3296
Publikationsdatum
25.12.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Keramische und Verbundwerkstoffe, Biomaterialien, Biomedizintechnik, Metalle und Legierungen
Elektronische Version(en)
https://doi.org/10.1002/jbm.a.37819 (Zugang: Offen)